If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+21.5x-4.9x^2=0
a = -4.9; b = 21.5; c = +3;
Δ = b2-4ac
Δ = 21.52-4·(-4.9)·3
Δ = 521.05
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21.5)-\sqrt{521.05}}{2*-4.9}=\frac{-21.5-\sqrt{521.05}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21.5)+\sqrt{521.05}}{2*-4.9}=\frac{-21.5+\sqrt{521.05}}{-9.8} $
| -14+-x=10+2x | | y/1/3y+8=11 | | -2+2x=8+4x | | 6x-18-7x*(3-x)=0 | | (3x)+(3x)+(2x-10)+(2x-10)=360 | | -0.15(y^2)+y-130=0 | | -0.15y^2+y-130=0 | | 2x+3x0=5x-0 | | 5a-10-2a+15=0 | | 5a-10-2a+15=3a-5 | | 8x+12-x=3x-9 | | 6(-3x+5)=90 | | 16^-4x=7^-x-4 | | X-3=5x+6 | | .5(8+4)=12-c | | x+x^2/8.28=5.75 | | 1/2(8+4)=12-c | | 4/5=6/y+2 | | 3v+16=46 | | 14+3x=49/x | | 20=u/4-13 | | 5y-13y=-48 | | 11x+21=4x+56 | | 8u^2+2u-6=0 | | 5(y-4)-2y=4 | | (2x-50)+(x+10)=180 | | 27=5(x+7)+3x | | 100x+5=64x=14 | | 8x–5=–2x+15 | | –8x–5=–2x+ | | 8/20x-x=-11/4 | | 2+x=105 |